M317 In Class Exam solutions

1. If $f \in C[0,2]$ then for some finite M, $|f(x)| \le M$ for $0 \le x \le 2$.

If *f* is continuous on the compact set [0,2]then rng[f] is compact by the compact range theorem. compact=closed and bounded, rng[f] bounded means $|f(x)| \le M$ for $0 \le x \le 2$ So this is true.

2. If $f \in C[0,1]$ then rng[f] contains all its accumulation points.

If *f* is continuous on the compact set [0,1] then rng[f] is compact by the compact range theorem. compact=closed and bounded, closed=contains all its accumulation points Then rng[f] contains all its accumulation points so this is true.

3. If $f \in C[a, b]$ and $\{x_n\}$ is convergent, then $\{f(x_n)\}$ is a C-sequence

If *f* is continuous on the compact set [0,1] then *f* is uniformly continuous on [0,1] If $\{x_n\}$ is convergent, then $\{x_n\}$ is a C-sequence Since *f* is uniformly continuous on [0,1], *f* maps C-seq's in [0,1] into C-seq's in rng[f]Then $\{f(x_n)\}$ is a C-sequence so this is true.

4. If $f \in C(a,b)$ then [f(a) + f(b)]/2 belongs to rng[f] so

 $f(x) = \frac{1}{(x-a)(b-x)} \in C(a,b)$ but neither f(a) nor f(b) belong to rng[f]This is false

5. If $f \in C[0,1]$ and f(x) < 0 for all x in [0,1], then for some A < 0, $f(x) \le A < 0 \ \forall x \in [0,1]$.

If *f* is continuous on the compact set [0,1] then the extreme value theorem asserts that for some x^* in [0,1], $f(x^*) = \sup_{x} f = A$.

Since f(x) < 0 for all x in [0,1], A < 0Then $f(x) \le f(x^*) = \sup_{x \to a} f = A < 0$ for all x in [0,1] so this is true

6. If $\{a_n\} \subset dom[f]$ converges to *A* and $\{f(a_n)\}$ converges to f(A), then *f* is continuous at x = A.

this is false (if, for ALL sequences $\{a_n\} \subset dom[f]$ converging to *A* we had $f(a_n) \rightarrow f(A)$ it would be true.) Consider

$$f(x) = \begin{cases} \frac{x}{|x|} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

Then $x_n = \frac{1}{n} \to 0$ and $f(x_n) = 1 \to 1 = f(0)$ but *f* is not continuous at x = 0.

7. If $f \in C(0,1)$ and $f(x_0) > 0$ for some x_0 in (0,1) then f(x) > 0 for all $x \in N_{\varepsilon}(x_0)$ for some $\varepsilon > 0$.

Since $f(x_0) > 0$, $f(x_0)/10 > 0$ and for this positive number there exists $\varepsilon > 0$ such that

$$|f(x) - f(x_0)| < \frac{f(x_0)}{10} \quad \text{for all } |x - x_0| < \varepsilon$$

$$- \frac{f(x_0)}{10} < f(x) - f(x_0) < \frac{f(x_0)}{10} \quad \text{for all } |x - x_0| < \varepsilon$$

$$f(x_0) - \frac{f(x_0)}{10} < f(x) < f(x_0) + \frac{f(x_0)}{10} \quad \text{for all } |x - x_0| < \varepsilon$$

Since $f(x_0) - \frac{f(x_0)}{10} > 0$, we have f(x) > 0 for all $x \in N_{\varepsilon}(x_0)$ so this is true.

8. If $f \in C[0,1]$ and x < y implies f(x) < f(y) for all x, y in [0,1] then f has a continuous inverse.

If $f \in C[0,1]$ and x < y implies f(x) < f(y) for all x, y in [0,1], then f is continuous and strictly increasing. This is sufficient to imply (by the continuous inverse theorem) that f^{-1} exists and is continuous.