M317 In Class Exam solutions

1. If $f \in C[0,2]$ then for some finite $M,|f(x)| \leq M$ for $0 \leq x \leq 2$.

If f is continuous on the compact set [0,2]
then $r n g[f]$ is compact by the compact range theorem.
compact=closed and bounded,
$r n g[f]$ bounded means $|f(x)| \leq M$ for $0 \leq x \leq 2$
So this is true.
2. If $f \in C[0,1]$ then $r n g[f]$ contains all its accumulation points.

If f is continuous on the compact set $[0,1]$ then $r n g[f]$ is compact by the compact range theorem.
compact=closed and bounded,
closed=contains all its accumulation points
Then $r n g[f]$ contains all its accumulation points so this is true.
3. If $f \in C[a, b]$ and $\left\{x_{n}\right\}$ is convergent, then $\left\{f\left(x_{n}\right)\right\}$ is a C-sequence

If f is continuous on the compact set $[0,1]$ then f is uniformly continuous on $[0,1]$ If $\left\{x_{n}\right\}$ is convergent, then $\left\{x_{n}\right\}$ is a C-sequence
Since f is uniformly continuous on [0,1], f maps C-seq's in [0,1] into C-seq's in rng[f] Then $\left\{f\left(x_{n}\right)\right\}$ is a C-sequence so this is true.
4. If $f \in C(a, b)$ then $[f(a)+f(b)] / 2$ belongs to $r n g[f]$ so \ldots.
$f(x)=\frac{1}{(x-a)(b-x)} \in C(a, b)$ but neither $f(a)$ nor $f(b)$ belong to $r n g[f]$
This is false
5. If $f \in C[0,1]$ and $f(x)<0$ for all x in [0,1], then for some $A<0, f(x) \leq A<0 \forall x \in[0,1]$.

If f is continuous on the compact set $[0,1]$ then the extreme value theorem asserts that for some x^{*} in $[0,1], f\left(x^{*}\right)=\sup _{I} f=A$.
Since $f(x)<0$ for all x in [0, 1], $A<0$
Then $f(x) \leq f\left(x^{*}\right)=\sup _{I} f=A<0$ for all x in $[0,1]$ so this is true
6. If $\left\{a_{n}\right\} \subset \operatorname{dom}[f]$ converges to A and $\left\{f\left(a_{n}\right)\right\}$ converges to $f(A)$, then f is continuous at $x=A$.
this is false (if, for ALL sequences $\left\{a_{n}\right\} \subset \operatorname{dom}[f]$ converging to A we had $f\left(a_{n}\right) \rightarrow f(A)$ it would be true.)
Consider

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x}{|x|} & \text { if } & x \neq 0 \\
1 & \text { if } & x=0
\end{array}\right.
$$

Then $x_{n}=\frac{1}{n} \rightarrow 0$ and $f\left(x_{n}\right)=1 \rightarrow 1=f(0)$ but f is not continuous at $x=0$.
7. If $f \in C(0,1)$ and $f\left(x_{0}\right)>0$ for some x_{0} in $(0,1)$ then $f(x)>0$ for all $x \in N_{\varepsilon}\left(x_{0}\right)$ for some $\varepsilon>0$.

Since $f\left(x_{0}\right)>0, f\left(x_{0}\right) / 10>0$ and for this positive number there exists $\varepsilon>0$ such that

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)\right| & <\frac{f\left(x_{0}\right)}{10} \text { for all }\left|x-x_{0}\right|<\varepsilon \\
-\frac{f\left(x_{0}\right)}{10}<f(x)-f\left(x_{0}\right)<\frac{f\left(x_{0}\right)}{10} & \text { for all }\left|x-x_{0}\right|<\varepsilon \\
f\left(x_{0}\right)-\frac{f\left(x_{0}\right)}{10}<f(x)<f\left(x_{0}\right)+\frac{f\left(x_{0}\right)}{10} & \text { for all }\left|x-x_{0}\right|<\varepsilon
\end{aligned}
$$

Since $f\left(x_{0}\right)-\frac{f\left(x_{0}\right)}{10}>0$, we have $f(x)>0$ for all $x \in N_{\varepsilon}\left(x_{0}\right)$ so this is true.
8. If $f \in C[0,1]$ and $x<y$ implies $f(x)<f(y)$ for all x, y in $[0,1]$ then f has a continuous inverse.

If $f \in C[0,1]$ and $x<y$ implies $f(x)<f(y)$ for all x, y in $[0,1]$, then f is continuous and strictly increasing. This is sufficient to imply (by the continuous inverse theorem) that f^{-1} exists and is continuous.

